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Abstract: A sequence, {sn}, which follows a second-order linear recurrence relation satisfies
sn+1 = c1sn + c2sn−1, for some constants c1 and c2 where c2 6= 0. For any positive integer k,
we construct such a sequence with period k. By varying the initial values s0 and s1, a given
second-order linear recurrence relation can generate at most three distinct non-trivial periods,
one of which is the least common multiple of the other two.

1. Introduction

A sequence is a function f(n) = sn with domain N ∪ {0}. We will denote this sequence {sn}.
A sequence is said to follow a second-order linear recurrence relation if there exists two constants,
c1 and c2, c2 6= 0 such that

sn = c1sn−1 + c2sn−2, n ≥ 2.

A famous example of this is:

Example 1.1. The Fibonacci Sequence:

s0 = 0

s1 = 1

sn = 1 · sn−1 + 1 · sn−2.

Thus the sequence is
0, 1, 1, 2, 3, 5, 8, 13, 21, ....

Given a sequence which follows a second-order linear recurrence relation, we are interested in
determining if that sequence is periodic. Here, we say that a sequence {sn} is periodic if there
exists a positive integer k such that sn+k = sn for all n ≥ 0. This k is called the period of the
sequence. We can see that the above example is not periodic but we can construct sequences that
are.

Example 1.2.

s0 = 0

s1 = 1

sn =
√

3sn−1 − sn−2.

Thus c1 =
√

3 and c2 = −1. Then the sequence is

0, 1,
√

3, 2,
√

3, 1, 0,−1,−
√

3,−2,−
√

3,−1, 0, 1,
√

3, ....
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The above example is indeed periodic with a period of 12.

Given these examples, for a sequence {sn} which follows a second order linear recurrence re-
lation, some questions are:

• Is {sn} always periodic? We can already see that in general, the answer is no.

• What conditions must be satisfied in order for {sn} to be periodic?

• If {sn} is periodic, what are the possible periods?

In this paper we answer these questions and determine how to choose c1, c2, s0 and s1 such that
we can create a periodic sequence.

2. Preliminaries

In this section we discuss some properties of periodic sequences and develop the linear algebra
and complex numbers ideas needed in order to get our results.
For this section, we fix a sequence {sn} satisfying the second order linear recurrence relation
sn = c1sn−1 + c2sn−2.

Lemma 2.1. It is the case that {sn} is periodic if and only if there exists a k > 0 such that
s0 = sk and s1 = sk+1. Furthermore, the period of the sequence is the smallest k for which this
occurs.

Proof: Let {sn} be periodic. Recall that this means that there exists a positive integer k such
that sn+k = sn for all n ≥ 0. Thus pick n = 0, and n = 1 then we have sk = s0 and sk+1 = s1.

Let sk = s0 and sk+1 = s1 for some k > 0. We want to show that sn+k = sn for all n ≥ 0, which
we can do inductively. For the base case note that s2 = c1s1 + c2s0 and sk+2 = c1sk+1 + c2sk, and
since sk = s0 and sk+1 = s1, we have that s2 = sk+2. Assume s` = sk+` and s`+1 = sk+`+1. Now
consider s`+2 = c1s`+1 + c2s` = c1sk+`+1 + c2sk+` = sk+`+2. Thus by mathematical induction,
sn+k = sn for all n ≥ 0.

That the period is the smallest k such that s0 = sk and s1 = sk+1 should be clear.

Thus we simply need to find a k such that s0 = sk and s1 = sk+1 in order to determine that {sn}
is periodic. However, we can imagine having an {sn} such that the period is large, for example,
1000. Thus we would have that s0 = s1000 and s1 = s1001. However, in order find that the period
was 1000, we would have had to compute s2, s3, s4, ..., s1001 and this is incredibly tedious. We can
avoid this and gain a clearer insight into the problem by considering the information given by our
second order linear recurrence relation and consecutive terms in our sequences as matrices and
vectors respectively and using linear algebra techniques to help analyze periodicity.

We can associate a 2× 2 matrix A to {sn}, namely

A =

[
0 1
c2 c1

]
.

Furthermore, let sn be the nth term in our sequence, and define

xn =

[
sn
sn+1

]
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for n ≥ 0.

Note that

x0 =

[
s0
s1

]
is the vector with our initial two terms.

Now consider what happens if we perform Axn. We have that

Axn =

[
0 1
c2 c1

] [
sn
sn+1

]
=

[
sn+1

c1sn+1 + c2sn

]
=

[
sn+1

sn+2

]
= xn+1.

Note that this occurs by our recurrence relation. Thus we have that Axn = xn+1, which gives us
another method to compute terms in the sequence.

Of course, this does not appear to avoid the tediousness of multiple computations, and rather it
seems that we have further complicated it. However we will see further on that this approach
does indeed greatly simplify the situation.

Note that for a sequence to be periodic of period k it must be the case that x0 = xk due to
Lemma 2.1 and the definition of xn, since then we have

x0 =

[
s0
s1

]
=

[
sk
sk+1

]
= xk.

Thus we want to find a simple way to compute xk.

Lemma 2.2. For all n ≥ 0, Anx0 = xn.

Proof: We will prove this by induction on n.
Consider

Ax0 =

[
0 1
c2 c1

] [
s0
s1

]
=

[
s1

c1s1 + c2s0

]
.

Now note that

x1 =

[
s1
s2

]
=

[
s1

c1s1 + c2s0

]
,

and thus Ax0 = x1 proving the base case.

Assume that Amx0 = xm for some m ≥ 2.

Now consider

Am+1x0 = AAmx0 = Axm =

[
0 1
c2 c1

] [
sm
sm+1

]
=

[
sm+1

c1sm+1 + c2sm

]
=

[
sm+1

sm+2

]
= xm+1.

Thus by mathematical induction we have that Anx0 = xn.
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In order to continue it is useful for us to consider the definitions and properties of eigenvalues and
eigenvectors.

Definition 2.3. An eigenvector for A is a nonzero vector x such that Ax = λx for some scalar
λ. This λ is called an eigenvalue for A.

Eigenvectors and eigenvalues help us determine quickly when a sequence is periodic. Suppose
x0 is an eigenvector with eigenvalue λ. Then we have that

xn = Anx0 = An−1Ax0 = An−1λx0 = An−2λ2x0 = · · · = λnx0.

This greatly simplifies the computation of xn since we now have xn in terms of x0 with a con-
stant multiplier to a power which is considerably easier to deal with than our previous approach.
We now know that in order for the sequence to be periodic of period k, we simply need to find
eigenvalues such that λk = 1 since then xk = λkx0 becomes xk = 1 ·x0 which satisfies the criterion
of being periodic.

Thus {sn} is periodic if and only if there exists a k such that

xk = λkx0 = x0.

Now we want to know how the coefficients c1 and c2 and the eigenvalues are related. First, λ
is an eigenvalue if and only if det(A− λI) = 0. In other words,

det(A− λI) = det

([
0 1
c2 c1

]
−
[
λ 0
0 λ

])
= det

([
−λ 1
c2 c1 − λ

])
= −λ (c1 − λ)− c2
= λ2 − λc1 − c2
= 0.

Thus, λ is an eigenvalue if it is a solution to x2 − c1x − c2 = 0. We call this the characteristic
equation for the recurrence relation. Let λ1, λ2 ∈ C be solutions to the characteristic equation.
We have

(x− λ1)(x− λ2) = x2 − (λ1 + λ2)x− (−λ1λ2) = 0.

Since
x2 − c1x− c2 = x2 − (λ1 + λ2)x− (−λ1λ2) = 0,

we have c1 = λ1 + λ2 and c2 = −λ1λ2.

Roots of unity, described below, play an integral role in obtaining our results.

Definition 2.4. The nth roots of unity are the complex roots of the equation zn = 1.

Specifically, the nth roots of unity can be written in rectangular form as cos(2πkn ) + i sin(2πkn )

or in polar form as e
2πk
n
i where k = 0, 1, 2, ..., n− 1 by [1, p. 34].

Example 2.5. The 2nd roots of unity are the roots of z2 = 1 which are clearly −1 and 1.
But we can also show this using our formula:

cos(0 · π) + i sin(0 · π) = 1

cos(1 · π) + i sin(1 · π) = −1.
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Example 2.6. The 6th roots of unity are cos(2πk6 ) + i sin(2πk6 ), 0 ≤ k ≤ 5, and are

1,
1

2
+ i

√
3

2
,−1

2
+ i

√
3

2
,−1,−1

2
− i
√

3

2
,
1

2
− i
√

3

2
.

Notice that −1 is both a second root of unity and a sixth root of unity.

Definition 2.7. A number r ∈ C is a primitive nth root of unity if n is the smallest positive
integer of m for which rm = 1.

Thus, −1 is a sixth root of unity but a primitive second root of unity.

The reader can check that an nth root of unity cos(2πkn ) + i sin(2πkn ) is primitive if and only if

gcd(k, n) = 1; also, if z is a primitive nth root of unity, then zm = 1 if and only if n|m.

3. Results

Theorem 3.1. Let k ∈ N be given, and let

s0 = 0

s1 = 1

sn = 2 cos
(2π

k

)
sn−1 − sn−2.

Then the sequence has period k.

The proof of this theorem will be given later on with our other two results. (Proof omitted.)

Example 3.2. Let k = 12. Let

s0 = 0

s1 = 1

sn = 2 cos
(2π

12

)
sn−1 − sn−2.

The terms of the sequence are:

0, 1,
√

3, 2,
√

3, 1, 0,−1,−
√

3,−2,−
√

3,−1, 0, 1, . . . .

Thus we can see that the period is 12 and this agrees with Theorem 3.1.

Theorem 3.3. Let λ be a primitive kth root of unity which is a solution to the characteristic
equation. If s1/s0 = λ, then the period of the sequence is k.

Proof: Recall that a solution to the characteristic equation is an eigenvalue for A. Let v be an
eigenvector with eigenvalue λ, and let x0 be a vector of initial conditions. We have

xk = Akx0 = λkx0 = x0.

Recall that k is a primitive root of unity. If xn = x0, then k | n, hence k ≤ n and the period is k.

Example 3.4. Let λ1 = i and λ2 = 1. Then c1 = λ1 + λ2 = i+ 1 and c2 = −λ1λ2 = −i, so the
recurrence relation we obtain from these eigenvalues is

sn = (i+ 1)sn−1 − isn−2.

Pick s0 = 1 and s1 = i, then clearly s1/s0 = i. Thus the terms of the sequence are :

1, i,−1,−i, 1, i,−1,−i, 1, i,−1,−i, ....

This sequence has period 4, as expected, since λ1 = i is a primitive 4th root of unity.
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Example 3.5. Let {sn} be as above, and let s0 = s1 = 3. Then s1/s0 = 1 = λ2, thus the terms
of the sequence are

3, 3, 3, 3 . . . .

This sequence has period 1, as expected since 1 is a primitive 1st root of unity.

Theorem 3.6. Let λ1 be a primitive mth root of unity and let λ1 be a primitive `th root of unity,
and suppose both λ1 and λ2 are solutions to the characteristic equation. If s1/s0 6= λ1, λ2, then
the period of the sequence is lcm(m, `).

Proof: Let u be an eigenvector with eigenvalue λ1 and v be an eigenvector with eigenvalue λ2,
where λ1 is a primitive mth root of unity and λ2 is a primitive `th root of unity.

Let x0 be the vector of the initial conditions. Since u and v span C2 [2], we can write x0 =
au + bv, where a and b are both non-zero constants. Since Anx0 = λnx0 for all n, we have
xn = λn1au+ λn2bv. In order for

xk = λk1av + λk2bu = au+ bv = x0,

we need λk1 = λk2 = 1, by the linear independence of u and v. This only occurs when m | n and
` | n, and the smallest such n is lcm(m, `), hence the period k is lcm(m, `).

Example 3.7. Let λ1 = i and λ2 = 1. From these eigenvalues we get that the recurrence relation
is

sn = (i+ 1)sn−1 − isn−2,

as before. Let s0 = 2 and s1 = i+ 1. The terms of the sequence are :

2, i+ 1, 0, 1− i, 2, i+ 1, 0, 1− i, 2, i+ 1, 0, 1− i, ....
This sequence has period 4, which is expected since lcm(4, 1) = 4.

4. Open Questions

Apart from looking at second order linear recurrence relations, one can also consider looking
at periodicity of sequences satisfying a third-order recurrence relation, which follows the form

sn = c1sn−1 + c2sn−2 + c3sn−3.

Can we obtain a sequence of period k where k ∈ Z? If we can, is it possible to construct a sequence
of only real numbers or are complex numbers necessary? It is our hope that the theorems discussed
in this paper can be adapted to help answer these questions.

One can also think about these questions when looking at periodicity mod m, where only
the last digit of the number is considered. In the case where m is prime is understood [3], see
“Recursive Sequences Modulo p2”. [4]
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